Package: rwavelet 0.4.1.99999
rwavelet: Wavelet Analysis
Perform wavelet analysis (orthogonal,translation invariant, tensorial, 1-2-3d transforms, thresholding, block thresholding, linear,...) with applications to data compression, denoising/regression or clustering. The core of the code is a port of 'MATLAB' Wavelab toolbox written by D. Donoho, A. Maleki and M. Shahram (<https://statweb.stanford.edu/~wavelab/>).
Authors:
rwavelet_0.4.1.99999.tar.gz
rwavelet_0.4.1.99999.zip(r-4.5)rwavelet_0.4.1.99999.zip(r-4.4)rwavelet_0.4.1.99999.zip(r-4.3)
rwavelet_0.4.1.99999.tgz(r-4.4-any)rwavelet_0.4.1.99999.tgz(r-4.3-any)
rwavelet_0.4.1.99999.tar.gz(r-4.5-noble)rwavelet_0.4.1.99999.tar.gz(r-4.4-noble)
rwavelet_0.4.1.99999.tgz(r-4.4-emscripten)rwavelet_0.4.1.99999.tgz(r-4.3-emscripten)
rwavelet.pdf |rwavelet.html✨
rwavelet/json (API)
# Install 'rwavelet' in R: |
install.packages('rwavelet', repos = c('https://fabnavarro.r-universe.dev', 'https://cloud.r-project.org')) |
Bug tracker:https://github.com/fabnavarro/rwavelet/issues
machine-learningregressionwavelet
Last updated 3 months agofrom:3e49fab9ed. Checks:OK: 3 NOTE: 4. Indexed: yes.
Target | Result | Date |
---|---|---|
Doc / Vignettes | OK | Nov 17 2024 |
R-4.5-win | NOTE | Nov 17 2024 |
R-4.5-linux | NOTE | Nov 17 2024 |
R-4.4-win | NOTE | Nov 17 2024 |
R-4.4-mac | NOTE | Nov 17 2024 |
R-4.3-win | OK | Nov 17 2024 |
R-4.3-mac | OK | Nov 17 2024 |
Exports:aconvblock_partitionblock_partition2dBlockThreshCircularShiftcubelengthCVlinearDownDyadHiDownDyadLodyaddyadlengthFTWT2_POFWT_POFWT_TIFWT2_POFWT2_TIFWT3_POGWNHardThreshiconvvinvblock_partitioninvblock_partition2dITWT2_POIWT_POIWT_TIIWT2_POIWT2_TIIWT3_POJSThreshlshiftMADMakeONFilterMakeSignalMakeSignalNewbMinMaxThreshMirrorFiltMultiMADMultiSUREMultiVisupacketPlotSpikesPlotWaveCoeffquadlengthrepmatrshiftShapeAsRowSNRSoftThreshSUREThreshUpDyadHiUpDyadLoUpSampleNValSUREThreshVisuThreshWaveFEX