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adjacency_mat Compute the Adjacency Matrix of a Gaussian Weighted Graph

Description

adjacency_mat calculates the adjacency matrix of a Gaussian weighted graph based on the distance
between points in R3.

Usage

adjacency_mat(
pts,
f = function(x) {

exp(-x^2/8)
},
s = 0

)

Arguments

pts Matrix representing the coordinates of N points in R3. Each row should corre-
spond to a point.

f A scalar potential function. By default, the Gaussian potential exp(−x2/8) is
used.

s Numeric threshold used to sparsify the adjacency matrix. Any value below this
threshold will be set to zero. Default is 0.

Details

The function computes pairwise distances between each point in pts and weights the adjacency
matrix based on the scalar potential f. The final adjacency matrix can be sparsified by setting
values below the threshold s to zero.

Value

A matrix representing the adjacency matrix of the Gaussian weighted graph.

See Also

laplacian_mat for calculating the Laplacian matrix, swissroll for generating a Swiss roll dataset.

Examples

pts <- swissroll(N=100, seed=0, a=1, b=4)
W <- adjacency_mat(pts)
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analysis Compute the Analysis Operator for a Graph Signal

Description

analysis computes the transform coefficients of a given graph signal using the provided frame
coefficients.

Usage

analysis(y, tf)

Arguments

y Numeric vector or matrix representing the graph signal to analyze.

tf Numeric matrix of frame coefficients.

Details

The analysis operator uses the frame coefficients to transform a given graph signal into its repre-
sentation in the transform domain. It is defined by the linear map TF : RV → RI . Given a function
f ∈ RV , the analysis operation is defined as:

TFf = (⟨f, ri⟩)i∈I

where ri are the frame vectors.

The transform is computed as:
coef = tf.y

Value

coef Numeric vector or matrix of transform coefficients of the graph signal.

See Also

synthesis, tight_frame

Examples

## Not run:
# Extract the adjacency matrix from the grid1 and compute the Laplacian
L <- laplacian_mat(grid1$sA)

# Compute the spectral decomposition of L
decomp <- eigensort(L)

# Generate the tight frame coefficients using the tight_frame function
tf <- tight_frame(decomp$evalues, decomp$evectors)
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# Create a random graph signal.
f <- rnorm(nrow(L))

# Compute the transform coefficients using the analysis operator
coef <- analysis(f, tf)

## End(Not run)

betathresh Apply Beta Threshold to Data

Description

betathresh performs a generalized thresholding operation on the data y. The thresholding opera-
tion is parameterized by the parameter beta.

Usage

betathresh(y, t, beta = 2)

Arguments

y Numeric vector or matrix representing the noisy data.
t Non-negative numeric value representing the threshold.
beta Numeric value indicating the type of thresholding.

Details

The function offers flexibility by allowing for different types of thresholding based on the beta
parameter. Soft thresholding, commonly used in wavelet-based denoising corresponds to beta=1
. James-Stein thresholding corresponds to beta=2. The implementation includes a small constant
for numerical stability when computing the thresholding operation.

The thresholding operator is defined as:

τ(x, t) = xmax
(
1− tβ |x|−β , 0

)
with β ≥ 1.

Value

x Numeric vector or matrix of the filtered result.

References

Donoho, D. L., & Johnstone, I. M. (1995). Adapting to unknown smoothness via wavelet shrinkage.
Journal of the american statistical association, 90(432), 1200-1224.

de Loynes, B., Navarro, F., & Olivier, B. (2021). Data-driven thresholding in denoising with spectral
graph wavelet transform. Journal of Computational and Applied Mathematics, 389, 113319.
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Examples

# Define a 2x2 matrix
mat <- matrix(c(2, -3, 1.5, -0.5), 2, 2)

# Apply soft thresholding with a threshold of 1
betathresh(mat, 1, 1)

download_graph Download Sparse Matrix form the SuiteSparse Matrix Collection

Description

download_graph allows to download sparse matrices from the SuiteSparse Matrix Collection.

Usage

download_graph(matrixname, groupname, svd = FALSE, add_info = FALSE)

Arguments

matrixname Name of the graph to download.

groupname Name of the group that provides the graph.

svd Logical, if TRUE, a ".mat" file containing the singular values of the matrix is
downloaded (if available). Default is FALSE.

add_info Logical, if TRUE, additional information about the graph will be fetched and
included in the output. Default is FALSE.

Details

download_graph automatically converts the downloaded matrix into a sparse matrix format. If
coordinates are associated with the graphs, they are downloaded and included in the output. Visit
https://sparse.tamu.edu/ or see SuiteSparseData to explore groups and matrix names.

Value

A list containing several components:

• sA: A sparse matrix representation of the downloaded graph.

• xy: Coordinates associated with the graph nodes (if available).

• dim: A data frame with the number of rows, columns, and numerically nonzero elements.

• temp: The path to the temporary directory where the matrix and downloaded files (including
singular values if requested) are stored.

• info: Additional information about the graph (included when add_info is TRUE).

https://sparse.tamu.edu/
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Note

This temporary directory can be accessed, for example, via list.files(grid1$temp). To open
the read .mat files (containing singular values), "R.matlab" or "foreign" packages can be used. After
using the downloaded data, you can delete the content of the temporary folder.

When add_info is set to TRUE, the function retrieves comprehensive information about the graph
using get_graph_info.

References

Davis, T. A., & Hu, Y. (2011). The University of Florida sparse matrix collection. ACM Transac-
tions on Mathematical Software (TOMS), 38(1), 1-25.

Kolodziej, S. P., Aznaveh, M., Bullock, M., David, J., Davis, T. A., Henderson, M., Hu, Y., &
Sandstrom, R. (2019). The suitesparse matrix collection website interface. Journal of Open Source
Software, 4(35), 1244.

See Also

get_graph_info, SuiteSparseData

Examples

## Not run:
matrixname <- "grid1"
groupname <- "AG-Monien"
download_graph(matrixname,groupname)
list.files(grid1$temp)

## End(Not run)

eigendec Spectral decomposition of a symetric matrix

Description

Eigen decomposition of dense symmetric/hermitian matrix M using divide-and-conquer methods
that provides slightly different results than the standard method, but is considerably faster for large
matrices.

Usage

eigendec(M)

Arguments

M a matrix.
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eigensort Spectral Decomposition of a Symmetric Matrix

Description

eigensort performs the spectral decomposition of a symmetric matrix. The eigenvalues and eigen-
vectors are sorted in increasing order by eigenvalues.

Usage

eigensort(M)

Arguments

M Symmetric matrix, either sparse or dense, to be decomposed.

Value

A list containing:

• evalues: A vector of sorted eigenvalues in increasing order.

• evectors: A matrix of corresponding eigenvectors.

Examples

A <- matrix(1, ncol=2, nrow=2)
dec <- eigensort(A)

forward_gft Compute Forward Graph Fourier Transform

Description

forward_gft computes the Graph Fourier Transform (GFT) of a given graph signal f .

Usage

forward_gft(L, f, U = NULL)

Arguments

L Laplacian matrix of the graph.

f Numeric vector of the graph signal to analyze.

U Matrix of the Eigenvectors of the Laplacian matrix. If NULL (default), the
function will compute the eigendecomposition of the Laplacian.
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Details

The GFT is the representation of the graph signal on an orthonormal basis of the graph’s Laplacian
matrix. It allows to analyze the frequency content of signals defined on graphs. In this context,
the "frequency" of a graph signal refers to its decomposition in terms of the graph’s Laplacian
eigenvectors, which are similar to the harmonics of classical Fourier analysis.

The GFT of a graph signal f is given by:

f̂ = UT f

where U denotes the matrix of eigenvectors of the graph’s Laplacian.

When the eigenvectors U are not provided, the function computes them using the Laplacian matrix
L.

Value

hatf Numeric vector. Graph Fourier Transform of f .

References

Ortega, A., Frossard, P., Kovačević, J., Moura, J. M., & Vandergheynst, P. (2018). Graph signal
processing: Overview, challenges, and applications. Proceedings of the IEEE, 106(5), 808-828.

Shuman, D. I., Narang, S. K., Frossard, P., Ortega, A., & Vandergheynst, P. (2013). The emerging
field of signal processing on graphs: Extending high-dimensional data analysis to networks and
other irregular domains. IEEE signal processing magazine, 30(3), 83-98.

See Also

inverse_gft

Examples

## Not run:
# Extract the adjacency matrix from the grid1 and compute the Laplacian
L <- laplacian_mat(grid1$sA)

# Create a sample graph signal
f <- rnorm(nrow(L))

# Compute the forward GFT
hatf <- forward_gft(L, f)

## End(Not run)
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forward_sgwt Compute Forward Spectral Graph Wavelet Transform

Description

forward_sgwt computes the forward Spectral Graph Wavelet Transform (SGWT) for a given graph
signal f .

Usage

forward_sgwt(
f,
evalues,
evectors,
b = 2,
filter_func = zetav,
filter_params = list()

)

Arguments

f Numeric vector representing the graph signal to analyze.

evalues Numeric vector of eigenvalues of the Laplacian matrix.

evectors Matrix of eigenvectors of the Laplacian matrix.

b Numeric scalar that controls the number of scales in the SGWT. It must be
greater than 1.

filter_func Function used to compute the filter values. By default, it uses the zetav function
but other frame filters can be pass.

filter_params List of additional parameters required by filter_func. Default is an empty
list.

Details

The transform is constructed based on the frame defined by the tight_frame function, without the
need for its explicit calculation. Other filters can be passed as parameters. The SGWT provides a
multi-scale analysis of graph signals.

Given a graph signal f of lengthN , forward_sgwt computes the wavelet coefficients using SGWT.

The eigenvalues and eigenvectors of the graph Laplacian, are denoted as Λ and U respectively. The
parameter b controls the number of scales, and λmax is the largest eigenvalue.

For each scale j = 0, . . . , J , where

J =

⌊
log(λmax)

log(b)

⌋
+ 2
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the wavelet coefficients are computed as:

wj = U
(
gj ⊙ (UT f)

)
where

gj(λ) =
√
ψj(λ)

and ⊙ denotes element-wise multiplication.

The final result is a concatenated vector of these coefficients for all scales.

Value

wc A concatenated vector of wavelet coefficients.

Note

forward_sgwt can be adapted for other filters by passing a different filter function to the filter_func
parameter.

The computation of kmax using λmax and b applies primarily to the default zetav filter. It can be
overridden by providing it in the filter_params list for other filters.

References

Göbel, F., Blanchard, G., von Luxburg, U. (2018). Construction of tight frames on graphs and
application to denoising. In Handbook of Big Data Analytics (pp. 503-522). Springer, Cham.

Hammond, D. K., Vandergheynst, P., & Gribonval, R. (2011). Wavelets on graphs via spectral graph
theory. Applied and Computational Harmonic Analysis, 30(2), 129-150.

de Loynes, B., Navarro, F., Olivier, B. (2021). Data-driven thresholding in denoising with Spectral
Graph Wavelet Transform. Journal of Computational and Applied Mathematics, Vol. 389.

See Also

inverse_sgwt, tight_frame

Examples

## Not run:
# Extract the adjacency matrix from the grid1 and compute the Laplacian
L <- laplacian_mat(grid1$sA)

# Compute the spectral decomposition of L
decomp <- eigensort(L)

# Create a sample graph signal
f <- rnorm(nrow(L))

# Compute the forward Spectral Graph Wavelet Transform
wc <- forward_sgwt(f, decomp$evalues, decomp$evectors)

## End(Not run)
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full Conversion of Symmetric Sparse Matrix to Full Matrix

Description

full converts a symmetric sparse matrix, represented as sA, into a full matrix A.

Usage

full(sA)

Arguments

sA Symmetric sparse matrix, either in a sparse matrix format or in a three-column
format, that needs to be converted into a full matrix.

Value

A Full matrix constructed from the symmetric sparse matrix sA.

See Also

fullup

Examples

sA <- pittsburgh$sA
A <- full(sA)

fullup Convert Symmetric Sparse Matrix to Full Matrix

Description

fullup converts a symmetric sparse matrix sA, stored as an upper triangular matrix, to a full matrix
A.

Usage

fullup(sA)

Arguments

sA Matrix (sparseMatrix). Symmetric upper triangular matrix to be converted.
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Details

This function can be used for transforming matrices that have been stored in a memory-efficient
format (i.e., the upper triangle portion of a symmetric matrix) to their full format. The conversion
is done either by directly transforming the sparse matrix or by leveraging the full function.

Value

A Full symmetric matrix.

See Also

full

Examples

data(grid1)
A <- fullup(grid1$sA)

get_graph_info Retrieve Information Tables about a Specific Graph from the SuiteS-
parse Matrix Collection

Description

get_graph_info fetches the overview tables about a specified graph/matrix from the SuiteSparse
Matrix Collection.

Usage

get_graph_info(matrixname, groupname)

Arguments

matrixname Name of the matrix/graph for which to fetch information.
groupname Name of the group that provides the matrix/graph.

Details

The tables contain detailed information and properties about the graph/matrix, such as its size,
number of non-zero elements, etc. Visit https://sparse.tamu.edu/ of see SuiteSparseData to
explore groups and matrix names.

Value

A list of tables with detailed information about the specified matrix/graph:

• "Matrix Information"
• "Matrix Properties"
• "SVD Statistics" (if available)

https://sparse.tamu.edu/
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Note

The rvest package is used for parsing HTML, if it is not installed, the function will prompt for
installation.

References

Davis, T. A., & Hu, Y. (2011). The University of Florida sparse matrix collection. ACM Transac-
tions on Mathematical Software (TOMS), 38(1), 1-25.

Kolodziej, S. P., Aznaveh, M., Bullock, M., David, J., Davis, T. A., Henderson, M., Hu, Y., &
Sandstrom, R. (2019). The suitesparse matrix collection website interface. Journal of Open Source
Software, 4(35), 1244.

Examples

## Not run:
matrixname <- "grid1"
groupname <- "AG-Monien"
info_tables <- get_graph_info(matrixname,groupname)

# Matrix Information
info_tables[[1]]

# Matrix Properties
info_tables[[2]]

# SVD Statistics
info_tables[[3]]

## End(Not run)
#' @seealso \code{\link{download_graph}}, \code{\link{SuiteSparseData}}

grid1 Grid1 Graph from AG-Monien Graph Collection

Description

This dataset represents the "grid1" graph sourced from the AG-Monien Graph Collection, a col-
lection of test graphs provided by Ralf Diekmann and Robert Preis. The AG-Monien collection
encompasses graphs from various origins, including the Harwell-Boeing collection, NASA matri-
ces, and other graphs.

Usage

grid1
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Format

list of 3 elements

• xy: A matrix with the coordinates for each node in the graph.

• sA: A sparse matrix representation of the graph’s adjacency matrix.

• dim: A numeric vector containing the numbers of rows, columns, and numerically nonzero
elements in the adjacency matrix.

• temp: empty list (the path to the temporary directory where the matrix and downloaded files
from download_graph function).

• info: info: Additional information about the graph.

Source

AG-Monien Graph Collection by Ralf Diekmann and Robert Preis.

GVN Graph Von Neumann Variance Estimator

Description

GVN computes graph equivalent of the Von Neummann variance estimator.

Usage

GVN(y, A, L)

Arguments

y Numeric vector that represents the noisy data.

A Adjacency matrix of the graph.

L Laplacian matrix of the graph.

Details

In many real-world scenarios, the noise level σ2 remains generally unknown. Given any function
g : R+ → R+, a straightforward computation gives:

E[f̃T g(L)f̃ ] = fT g(L)f +E[ξT g(L)ξ] = fT g(L)f + σ2Tr(g(L))

A biased estimator of the variance σ2 can be given by:

σ̂2
1 =

f̃T g(L)f̃

Tr(g(L))
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Assuming the original graph signal is smooth enough that fT g(L)f is negligible compared to
Tr(g(L)), σ̂2 provides a reasonably accurate estimate of σ2. For this function, a common choice is
g(x) = x. Thanks to Dirichlet’s formula, it follows:

σ̂2
1 =

f̃TLf̃

Tr(L)
=

∑
i,j∈V wij |f̃(i)− f̃(j)|2

2Tr(L)

This is the graph adaptation of the Von Neumann estimator, hence the term Graph Von Neumann
estimator (GVN).

Value

The Graph Von Neumann variance estimate for the given noisy data.

References

de Loynes, B., Navarro, F., Olivier, B. (2021). Data-driven thresholding in denoising with Spectral
Graph Wavelet Transform. Journal of Computational and Applied Mathematics, Vol. 389.

von Neumann, J. (1941). Distribution of the ratio of the mean square successive difference to the
variance. Ann. Math. Statistics, 35(3), 433–451.

See Also

HPFVN

Examples

## Not run:
data(minnesota)
A <- minnesota$A
L <- laplacian_mat(A)
x <- minnesota$xy[ ,1]
n <- length(x)
f <- sin(x)
sigma <- 0.1
noise <- rnorm(n, sd = sigma)
y <- f + noise
sigma^2
GVN(y, A, L)

## End(Not run)

HPFVN High Pass Filter Von Neumann Estimator

Description

HPFVN computes graph extension of the Von Neummann variance estimator using finest scale coef-
ficients (as in classical wavelet approaches).
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Usage

HPFVN(wcn, evalues, b, filter_func = zetav, filter_params = list())

Arguments

wcn Numeric vector of noisy wavelet coefficients.

evalues Numeric vector corresponding to Laplacian spectrum.

b numeric parameter that control the number of scales.

filter_func Function used to compute the filter values. By default, it uses the zetav function
but other frame filters can be passed.

filter_params List of additional parameters required by filter_func. Default is an empty list.

Details

The High Pass Filter Von Neumann Estimator (HPFVN) is the graph analog of the classical Von
Neumann estimator, focusing on the finest scale coefficients. It leverages the characteristics of the
graph signal’s wavelet coefficients to estimate the variance:

σ̂2 =

∑n(J+1)
i=nJ+1(Wy)2i
Tr ψJ(L)

Note

HPFVN can be adapted for other filters by passing a different filter function to the filter_func
parameter.

The computation of kmax using λmax and b applies primarily to the default zetav filter. It can be
overridden by providing it in the filter_params list for other filters.

References

Donoho, D. L., & Johnstone, I. M. (1994). Ideal spatial adaptation by wavelet shrinkage. biometrika,
81(3), 425-455.

de Loynes, B., Navarro, F., Olivier, B. (2021). Data-driven thresholding in denoising with Spectral
Graph Wavelet Transform. Journal of Computational and Applied Mathematics, Vol. 389.

von Neumann, J. (1941). Distribution of the ratio of the mean square successive difference to the
variance. Ann. Math. Statistics, 35(3), 433–451.

See Also

GVN

Examples

## Not run:
A <- grid1$sA
L <- laplacian_mat(A)
x <- grid1$xy[ ,1]
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n <- length(x)
val1 <- eigensort(L)
evalues <- val1$evalues
evectors <- val1$evectors
f <- sin(x)
sigma <- 0.1
noise <- rnorm(n, sd = sigma)
y <- f + noise
b <- 2
wcn <- forward_sgwt(y, evalues, evectors, b=b)
sigma^2
HPFVN(wcn, evalues, b)
## End(Not run)

inverse_gft Compute Inverse Graph Fourier Transform

Description

inverse_gft computes the Inverse Graph Fourier Transform (IGFT) of a given transformed graph
signal f̂ .

Usage

inverse_gft(L, hatf, U = NULL)

Arguments

L Laplacian matrix of the graph (matrix).

hatf Numeric vector. Graph Fourier Transform of the signal to be inverted.

U Matrix of the eigenvectors of the Laplacian matrix. If NULL (default), the func-
tion will compute the eigendecomposition of the Laplacian.

Details

The IGFT enables the reconstruction of graph signals from their frequency domain representation.
The "frequency" in the context of graph signal processing refers to the decomposition of the signal
using the graph’s Laplacian eigenvectors.

The IGFT of a transformed graph signal f̂ is given by:

f = Uf̂

where U represents the matrix of eigenvectors of the graph’s Laplacian.

When the eigenvectors U are not provided, the function computes them from the Laplacian matrix
L.

Value

f Numeric vector. Original graph signal obtained from the inverse transform of f̂ .
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References

Ortega, A., Frossard, P., Kovačević, J., Moura, J. M., & Vandergheynst, P. (2018). Graph signal
processing: Overview, challenges, and applications. Proceedings of the IEEE, 106(5), 808-828.

Shuman, D. I., Narang, S. K., Frossard, P., Ortega, A., & Vandergheynst, P. (2013). The emerging
field of signal processing on graphs: Extending high-dimensional data analysis to networks and
other irregular domains. IEEE signal processing magazine, 30(3), 83-98.

See Also

forward_gft

Examples

## Not run:
# Extract the adjacency matrix from the grid1 and compute the Laplacian
L <- laplacian_mat(grid1$sA)

# Create a sample graph signal
f <- rnorm(nrow(L))

# Compute the forward GFT
hatf <- forward_gft(L, f)

# Compute the forward GFT
recf <- inverse_gft(L, hatf)

## End(Not run)

inverse_sgwt Compute Inverse Spectral Graph Wavelet Transform

Description

inverse_sgwt computes the pseudo-inverse Spectral Graph Wavelet Transform (SGWT) for wavelet
coefficients wc.

Usage

inverse_sgwt(
wc,
evalues,
evectors,
b = 2,
filter_func = zetav,
filter_params = list()

)
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Arguments

wc Numeric vector representing the spectral graph wavelet coefficients to recon-
struct the graph signal from.

evalues Numeric vector of eigenvalues of the Laplacian matrix.

evectors Matrix of eigenvectors of the Laplacian matrix.

b Numeric scalar that control the number of scales in the SGWT. It must be greater
than 1.

filter_func Function used to compute the filter values. By default, it uses the zetav function
but other frame filters can be passed.

filter_params List of additional parameters required by filter_func. Default is an empty list.

Details

The computation corresponds to the frame defined by the tight_frame function. Other filters can
be passed as parameters. Given the tightness of the frame, the inverse is simply the application of
the adjoint linear transformation to the wavelet coefficients.

Given wavelet coefficients wc, inverse_sgwt reconstructs the original graph signal using the in-
verse SGWT.

The eigenvalues and eigenvectors of the graph Laplacian are denoted as Λ and U respectively. The
parameter b controls the number of scales, and λmax is the largest eigenvalue.

For each scale j = 0, . . . , J , where

J =

⌊
log(λmax)

log(b)

⌋
+ 2

the reconstructed signal for that scale is computed as:

fj = (Uwcj ⊙ gj)U
T

where

gj(λ) =
√
ψj(λ)

and ⊙ denotes element-wise multiplication.

The final result is the sum of fj across all scales to reconstruct the entire graph signal.

Value

f A graph signal obtained by applying the SGWT adjoint to wc.

Note

inverse_sgwt can be adapted for other filters by passing a different filter function to the filter_func
parameter. The computation of kmax using λmax and b applies primarily to the default zetav filter.
It can be overridden by providing it in the filter_params list for other filters.
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References

Göbel, F., Blanchard, G., von Luxburg, U. (2018). Construction of tight frames on graphs and
application to denoising. In Handbook of Big Data Analytics (pp. 503-522). Springer, Cham.

Hammond, D. K., Vandergheynst, P., & Gribonval, R. (2011). Wavelets on graphs via spectral graph
theory. Applied and Computational Harmonic Analysis, 30(2), 129-150.

de Loynes, B., Navarro, F., Olivier, B. (2021). Data-driven thresholding in denoising with Spectral
Graph Wavelet Transform. Journal of Computational and Applied Mathematics, Vol. 389.

See Also

forward_sgwt, tight_frame

Examples

## Not run:
# Extract the adjacency matrix from the grid1 and compute the Laplacian
L <- laplacian_mat(grid1$sA)

# Compute the spectral decomposition of L
decomp <- eigensort(L)

# Create a sample graph signal
f <- rnorm(nrow(L))

# Compute the forward Spectral Graph Wavelet Transform
wc <- forward_sgwt(f, decomp$evalues, decomp$evectors)

# Reconstruct the graph signal using the inverse SGWT
f_rec <- inverse_sgwt(wc, decomp$evalues, decomp$evectors)

## End(Not run)

laplacian_mat Compute the Graph Laplacian Matrix

Description

laplacian_mat computes various forms of the graph Laplacian matrix for a given adjacency matrix
W.

Usage

laplacian_mat(W, type = "unnormalized")
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Arguments

W Adjacency matrix (dense or sparseMatrix).

type Character string, type of Laplacian matrix to compute. Can be "unnormalized"
(default), "normalized", or "randomwalk".

Details

The function supports three types of Laplacian matrices:

• Unnormalized Laplacian:
L = D −W

• Normalized Laplacian:
Lnorm = I −D−1/2WD−1/2

• Random Walk Laplacian:
Lrw = I −D−1W

Where:

• D is the degree matrix, a diagonal matrix where each diagonal elementDii represents the sum
of the weights of all edges connected to node i.

• W is the adjacency matrix of the graph.

• I is the identity matrix.

The function supports both standard and sparse matrix representations of the adjacency matrix.

Value

L The graph Laplacian matrix.

References

Chung, F. R. (1997). Spectral graph theory (Vol. 92). American Mathematical Soc.

Examples

# Define the 3x3 adjacency matrix
W <- matrix(c(0, 1, 0,

1, 0, 1,
0, 1, 0), ncol=3)

# Non-sparse cases
laplacian_mat(W, "unnormalized")
laplacian_mat(W, "normalized")
laplacian_mat(W, "randomwalk")

# Convert W to a sparse matrix
W_sparse <- as(W, "sparseMatrix")

# Sparse cases
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laplacian_mat(W_sparse, "unnormalized")
laplacian_mat(W_sparse, "normalized")
laplacian_mat(W_sparse, "randomwalk")

LD_SUREthresh Level Dependent Stein’s Unbiased Risk Estimate Thresholding

Description

Adaptive threshold selection using the Level Dependent Stein’s Unbiased Risk Estimate.

Usage

LD_SUREthresh(
J,
wcn,
diagWWt,
beta = 2,
sigma,
hatsigma = NA,
policy = "uniform",
keepSURE = FALSE

)

Arguments

J Integer. The finest scale, or the highest frequency. This parameter determines
the total number of scales that the function will process.

wcn A numeric vector of noisy spectral graph wavelet coefficients that need to be
thresholded.

diagWWt Numeric vector of weights.
beta Numeric. The type of thresholding to be used. If beta=1, soft thresholding is

applied. If beta=2, James-Stein thresholding is applied (Default is 2).
sigma Numeric. The standard deviation of the noise present in the wavelet coefficients.
hatsigma Numeric. An optional estimator of the noise standard deviation. If provided, the

function will also compute wavelet coefficient estimates using this estimator.
policy The policy for threshold setting. It can be either "uniform" (default) or "depen-

dent".
keepSURE A logical flag. If TRUE, the function will also return a list containing the results

of the SURE thresholding for each scale.

Details

This function applies SURE in a level dependent manner to wavelet coefficients, which aims to
minimize SURE at each wavelet scale.
In the "uniform" policy, the thresholds are set based on the absolute value of the wavelet coefficients.
In the "dependent" policy, the thresholds are set based on the wavelet coefficients normalized by the
weights from diagWWt.
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Value

A list containing the wavelet coefficient estimates after applying the SURE thresholding.

• wcLDSURE: The wavelet coefficient estimates obtained by minimizing SURE.

• wcLDhatSURE: If hatsigma is provided, this component contains the wavelet coefficient esti-
mates obtained using the hatsigma estimator.

• lev_thresh: If keepSURE is TRUE, this component contains a list of results similar to the
output of SUREthresh for each scale.

References

Donoho, D. L., & Johnstone, I. M. (1995). Adapting to unknown smoothness via wavelet shrinkage.
Journal of the american statistical association, 90(432), 1200-1224.

de Loynes, B., Navarro, F., Olivier, B. (2021). Data-driven thresholding in denoising with Spectral
Graph Wavelet Transform. Journal of Computational and Applied Mathematics, Vol. 389.

Stein, C. M. (1981). Estimation of the mean of a multivariate normal distribution. The annals of
Statistics, 1135-1151.

See Also

SUREthresh for the underlying thresholding method used at each scale.

Examples

## Not run:
# Compute the Laplacian matrix and its eigen-decomposition
L <- laplacian_mat(grid1$sA)
U <- eigensort(L)

# Compute the tight frame coefficients
tf <- tight_frame(U$evalues, U$evectors)

# Generate some noisy observation
n <- nrow(L)
f <- randsignal(0.01, 3, grid1$sA)
sigma <- 0.01
noise <- rnorm(n, sd = sigma)
tilde_f <- f + noise

# Compute the transform coefficients
wcn <- forward_sgwt(f, U$evalues, U$evectors)
wcf <- forward_sgwt(f, U$evalues, U$evectors)

# Compute the weights
diagWWt <- colSums(t(tf)^2)

# Compute to optimal threshold
lmax <- max(U$evalues)
J <- floor(log(lmax)/log(b)) + 2
LD_opt_thresh_u <- LD_SUREthresh(J=J,
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wcn=wcn,
diagWWt=diagWWt,
beta=2,
sigma=sigma,
hatsigma=NA,
policy = "uniform",
keepSURE = FALSE)

# Get the graph signal estimator
hatf_LD_SURE_u <- synthesis(LD_opt_thresh_u$wcLDSURE, tf)

## End(Not run)

localize_gft Localize Kernel at a Graph Vertex Using GFT

Description

This function localizes a kernel at a specific vertex using the Graph Fourier Transform (GFT).

Usage

localize_gft(i, L, evectors = NULL)

Arguments

i Integer index of the node where to localize the kernel.

L Laplacian matrix of the graph.

evectors Numeric matrix of the eigenvectors of the Laplacian matrix. If NULL (default),
the function will compute the eigendecomposition of the Laplacian.

Details

The GFT represents the signal in the graph’s frequency domain through the eigendecomposition of
the Laplacian matrix.

The kernel is localized by transforming an impulse signal centered at vertex i using the GFT. The
impulse for vertex i is represented by a vector s with all zeros except for a single one at the i-th
position. The GFT of a signal s is given by:

ŝ = UT s

where U is the matrix of eigenvectors of the Laplacian.

Applying the GFT to the impulse signal provides a spatial representation of the eigenvector (or
kernel) associated with a specific frequency (eigenvalue) centered around vertex i. This depicts
how the kernel influences the local neighborhood of the vertex.
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Value

s Kernel localized at vertex i using GFT.

See Also

forward_gft,localize_sgwt

Examples

## Not run:
L <- laplacian_mat(grid1$sA)
vertex_i <- sample(1:nrow(L), 1)
s <- localize_gft(vertex_i, L=L)
plot_signal(grid1, s)
s_gft <- forward_gft(L, s)
barplot(abs(s_gft), main="GFT of Localized Signal",

xlab="Eigenvalue Index", ylab="Magnitude")

## End(Not run)

localize_sgwt Localize a Kernel at a Specific Vertex using SGWT

Description

This function localizes a kernel at a specific vertex using the Spectral Graph Wavelet Transform
(SGWT).

Usage

localize_sgwt(i, evalues, evectors, b = 2)

Arguments

i Integer index of the node where to localize the kernel.

evalues Numeric vector of the eigenvalues of the Laplacian matrix.

evectors Numeric matrix of the eigenvectors of the Laplacian matrix.

b Numeric scalar that controls the number of scales in the SGWT. It must be
greater than 1.

Details

The SGWT offers a comprehensive understanding of graph signals by providing insights into both
vertex (spatial) and spectral (frequency) domains.

The kernel is localized by transforming an impulse signal centered at vertex i using the SGWT. The
SGWT leverages a wavelet function ψ(λ) to provide a multi-resolution analysis of the graph signal.
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The impulse signal at vertex i is a vector f with a one at the i-th position and zeros elsewhere. The
SGWT is given by:

Wf (λ) = f ∗ ψ(λ) = Uψ(Λ)UT f

where U is the matrix of eigenvectors of the Laplacian and Λ is the diagonal matrix of eigenvalues.
The localized spatial view of the kernel’s behavior around vertex i is achieved by transforming this
impulse signal using the above expression.

To gain insights into the spectral localization of this localized kernel, one can analyze its GFT to
understand how the energy of the kernel is distributed across various graph frequencies. As SGWT
scales move from coarse to fine, energy concentration of the localized kernel shifts from lower to
higher graph frequencies, indicating tighter spectral localization.

Value

f Kernel localized at vertex i using SGWT.

See Also

forward_sgwt, forward_gft, forward_gft

Examples

## Not run:
# Compute the Laplacian matrix and its eigen-decomposition
L <- laplacian_mat(grid1$sA)
decomp <- eigensort(L)

# Randomly select a vertex
vertex_i <- sample(1:nrow(L), 1)

f_sgwt <- localize_sgwt(vertex_i, evalues=decomp$evalues, evectors=decomp$evectors, b=2)

# Select one scale j from f_sgwt.
N <- nrow(grid1$sA)
j <- 5 # change scale j to view other scales
f <- f_sgwt[ ((j-1)*N+1):(j*N)]

# Plot the localized kernel (for the chosen scale) as a signal on the graph
plot_signal(grid1, f)

# Plot the magnitude of the GFT coefficients
barplot(abs(f_gft), main="GFT of Localized Signal",

xlab="Eigenvalue Index", ylab="Magnitude")

## End(Not run)
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minnesota Minnesota Road Network

Description

A dataset representing the Minnesota road network along with two associated synthetic signals.

Usage

minnesota

Format

A list with 5 elements:

• xy A matrix indicating the spatial location of each node.

• sA A sparse matrix representation of the road network’s adjacency matrix.

• f1 Synthetic signal generated with parameters η = 0.01 and k = 2.

• f2 Synthetic signal generated with parameters η = 0.001 and k = 4.

• labels A character vector with labels that represent various points of entry, border cross-
ings, and notable cities within Minnesota, with some nodes possibly lacking specific location
identifiers.

Details

The Minnesota roads graph represents a planar structure consisting of 2642 vertices and 6606 edges.

The signals come from the referenced paper generated using randsignal with parameters η =
0.01, k = 2 and η = 0.001, k = 4.

Source

D. Gleich. The MatlabBGL Matlab library.

References

de Loynes, B., Navarro, F., Olivier, B. (2021). Data-driven thresholding in denoising with Spectral
Graph Wavelet Transform. Journal of Computational and Applied Mathematics, Vol. 389.
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NYCdata NYC Taxi Network Dataset

Description

A dataset derived from NYC taxi trip records. Additionally, the dataset includes a signal f that
represents the total amount with added noise.

Usage

NYCdata

Format

A list with 2 elements:

• A: NYC adjacency matrix, constructed using Gaussian weights based on mean distances be-
tween locations.

• f: Signal representing the "total amount" with added artificial noise.

Details

The graph constructed represents the connectivity based on taxi trips between different locations.
The weights of the edges represent the frequency and distances of trips between locations.

The data comes from the methodology in the referenced paper. It is constructed from real-world
data fetched from NYC taxis databases. The graph consists of 265 vertices which correspond to
different LocationID (both Pick-Up and Drop-Off points). Gaussian weights are defined by

wij = exp(−τd2i,j)

, where di,j represents the mean distance taken on all the trips between locations i and j or j and i.

The signal f is constructed based on the "total amount" variable from the taxi dataset, with added
artificial noise.

References

de Loynes, B., Navarro, F., Olivier, B. (2021). Data-driven thresholding in denoising with Spectral
Graph Wavelet Transform. Journal of Computational and Applied Mathematics, Vol. 389.
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pittsburgh Pittsburgh Census Tracts Network.

Description

A dataset representing the graph structure of 402 census tracts of Allegheny County, PA.

Usage

pittsburgh

Format

A list with 4 elements:

• sA A sparse matrix capturing the connections between spatially adjacent census tracts in Al-
legheny County.

• xy A matrix indicating the spatial location of each census tract.

• f Artificial signal with inhomogeneous smoothness across nodes and two sharp peaks near
the center. This signal is formed using a mixture of five Gaussians in the underlying spatial
coordinates.

• y Noisy version of the signal.

Source

Data and associated materials were sourced from codes provided by Yu-Xiang Wang (UC Santa
Barbara) and are associated with the referenced paper.

References

Wang, Y. X., Sharpnack, J., Smola, A. J., & Tibshirani, R. J. (2016). Trend Filtering on Graphs.
Journal of Machine Learning Research, 17, 1-41.

plot_filter Plot Tight-Frame Filters

Description

plot_filter provides a graphical representation of tight-frame filters as functions of the eigenval-
ues of the Laplacian matrix.

Usage

plot_filter(lmax, b, N = 1000, filter_func = zetav, filter_params = list())
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Arguments

lmax Largest eigenvalue of the Laplacian matrix (numeric scalar).

b Parameter that controls the number of scales (numeric scalar).

N Number of discretization points for the x-axis. By default, N is set to 1000.

filter_func Function used to compute the filter values. By default, it uses the zetav function
but other frame filters can be pass.

filter_params List of additional parameters required by filter_func. Default is an empty list.

Details

The plotted functions represent the square root of the values given by the zetav function at different
scales.

This function plots the square roots of the functions forming the partition of unity, corresponding
to the construction of tight frames on the graph. The square root operation is essential as it ensures
the Parseval identity, making the constructed frame "tight" and preserving the energy of signals on
the graph when mapped to their frame representation.

plot_filter first determines the number of scales based on the largest eigenvalue λmax and the
parameter b as:

kmax =

⌊
log(λmax)

log(b)

⌋
+ 2

The function then plots the square root of the values given by the zetav function over the range [0,
λmax] for each scale.

Note

plot_filter can be adapted for other filters by passing a different filter function to the filter_func
parameter. The computation of kmax using λmax and b applies primarily to the default zetav filter.
It can be overridden by providing it in the filter_params list for other filters.

References

Coulhon, T., Kerkyacharian, G., & Petrushev, P. (2012). Heat kernel generated frames in the setting
of Dirichlet spaces. Journal of Fourier Analysis and Applications, 18(5), 995-1066.

Göbel, F., Blanchard, G., von Luxburg, U. (2018). Construction of tight frames on graphs and
application to denoising. In Handbook of Big Data Analytics (pp. 503-522). Springer, Cham.

Leonardi, N., & Van De Ville, D. (2013). Tight wavelet frames on multislice graphs. IEEE Trans-
actions on Signal Processing, 61(13), 3357-3367.

de Loynes, B., Navarro, F., Olivier, B. (2021). Data-driven thresholding in denoising with Spectral
Graph Wavelet Transform. Journal of Computational and Applied Mathematics, Vol. 389.

See Also

zetav
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Examples

plot_filter(6,2)

plot_graph Plot Graph

Description

Visualizes a graph using ggplot2. It plots nodes as points and edges as segments connecting these
points.

Usage

plot_graph(z, size = 0.75)

Arguments

z A list containing graph data. This list must have the following components:

• sA An adjacency matrix or a sparse Matrix representation of the graph.
• xy A matrix or dataframe containing the x and y coordinates of each node

in the graph.

size Numeric. Dot size for nodes. Default is 0.75.

Details

The function is primarily designed to work with the output from the download_graph function.
This ensures that the graph visualization upholds the structure and properties of the retrieved graph.
However, the function can also be utilized to visualize custom graph structures, provided they match
to the input format.

Note

If node coordinates xy are not provided, they will be calculated using spectral methods spectral_coords.
For large graphs, this can be computationally intensive and may take significant time. Use with cau-
tion for large graphs if node coordinates are not supplied.

See Also

download_graph, plot_signal, spectral_coords

Examples

data(grid1)
plot_graph(grid1)
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plot_signal Plot a Signal on Top of a Given Graph

Description

Visualize a signal over a graph.

Usage

plot_signal(z, f, size = 0.75, limits = range(f), ...)

Arguments

z A list containing graph data. This list must have the following components:

• sA An adjacency matrix or a sparse Matrix representation of the graph.
• xy A matrix or dataframe containing the x and y coordinates of each node

in the graph.

f Signal to plot.

size Numeric. Dot size for nodes. Default is 0.75.

limits Set colormap limits.

... Additional arguments passed to guide_colourbar to customize the colorbar
appearance (see ?guide_colourbar for more details).

Details

This function allows visualization of a graph signal f superimposed on the structure of a graph
defined by z. It offers an intuitive way to analyze the behavior of graph signals in the vertex
domain. The appearance of the colorbar can be customized by passing additional arguments that
are available for ggplot2::guide_colourbar.

Note

If node coordinates xy are not provided, they will be calculated using spectral methods spectral_coords.
For large graphs, this can be computationally intensive and may take significant time. Use with cau-
tion for large graphs if node coordinates are not supplied.

See Also

plot_graph, spectral_coords

Examples

f <- rnorm(length(grid1$xy[,1]))
plot_signal(grid1, f)
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PSNR Compute the Peak Signal to Noise Ratio

Description

PSNR function computes the Peak Signal to Noise Ratio (PSNR) between two signals or images.

Usage

PSNR(x, y)

Arguments

x Numeric vector/matrix. Original reference signal/image.

y numeric vector/matrix. Restored or noisy signal/image.

Details

Higher values of PSNR indicate closer similarity between the original and the compared signal or
image.

The PSNR is defined by:

PSNR(x, y) = 10 log10

(
max(max(x),max(y))2

MSE(x, y)

)

Value

PSNR Numeric. Peak Signal to Noise Ratio.

See Also

SNR

Examples

x <- cos(seq(0, 10, length=100))
y <- x + rnorm(100, sd=0.5)
PSNR(x, y)
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randsignal Generate Random Signal with Varying Regularity

Description

randsignal constructs a random signal with specific regularity properties, utilizing the adjacency
matrix A of the graph, a smoothness parameter eta, and an exponent k.

Usage

randsignal(eta, k, A, r)

Arguments

eta Numeric. Smoothness parameter (between 0 and 1).

k Interger. Smoothness parameter.

A Adjacency matrix. Must be symmetric.

r Optional. Largest eigenvalue of A in magnitude (obtained using the eigs func-
tion from the RSpectra package if not provided).

Details

This method is inspired by the approach described in the first referenced paper.

The generated signal is formulated as f = Akxη/r
k where xη represents Bernoulli random vari-

ables, and r is the largest eigenvalue of the matrix A.

The power k essentially captures the influence of a node’s k-hop neighborhood in the generated
signal, implying that a higher k would aggregate more neighborhood information resulting in a
smoother signal.

The normalization by the largest eigenvalue ensures that the signal remains bounded. This signal
generation can be related to the Laplacian quadratic form that quantifies the smoothness of signals
on graphs. By controlling the parameters η and k, we can modulate the smoothness or regularity of
the generated signal.

Value

f a numeric vector representing the output signal.

Note

While the randsignal function uses the adjacency matrix to parameterize and generate signals
reflecting node-to-node interactions, the smoothness of these signals can subsequently be measured
using the smoothmodulus function.

The generation is carried out in sparse matrices format in order to scale up.
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References

Behjat, H., Richter, U., Van De Ville, D., & Sörnmo, L. (2016). Signal-adapted tight frames on
graphs. IEEE Transactions on Signal Processing, 64(22), 6017-6029.

de Loynes, B., Navarro, F., & Olivier, B. (2021). Data-driven thresholding in denoising with spectral
graph wavelet transform. Journal of Computational and Applied Mathematics, 389, 113319.

See Also

smoothmodulus

Examples

## Not run:
# Generate a signal with smoothness parameters eta = 0.7 and k = 3
f <- randsignal(eta = 0.7, k = 3, A = grid1$sA)

## End(Not run)

rlogo R logo graph.

Description

A dataset containing a graph based on the R logo.

Usage

rlogo

Format

A list with 2 elements:

• xy: A matrix representing the coordinates for each node in the graph.

• sA: Adjacency matrix.
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smoothmodulus Modulus of Smoothness for Graph Signal

Description

smoothmodulus computes the modulus of smoothness (or Laplacian quadratic form) for a graph
signal.

Usage

smoothmodulus(f, A)

Arguments

f Numeric vector representing the signal on the graph nodes

A Adjacency matrix of the graph (matrix, can be either sparse or dense).

Details

smoothmodulus provide a measure that quantifies the smoothness of a signal on a graph. In other
words, it provides a measure of how much a signal varies between adjacent nodes. This measure is
analogous to the Laplacian quadratic form, which is a widely used metric in spectral graph theory
for quantifying signal smoothness.

The modulus of smoothness is calculated using: µ(f) = 0.5 ×
∑

(i,j)∈E Aij(fi − fj)
2 where E

is the set of edges, Aij is the adjacency matrix entry for nodes i and j, and fi and fj are the signal
values at nodes i and j respectively.

This metric essentially sums up the squared differences of signal values across adjacent nodes,
weighted by the adjacency matrix. A high value indicates a more variable or irregular signal across
the graph, while a lower value indicates a smoother signal.

Value

A numeric scalar value indicating the modulus of smoothness for the graph signal.

See Also

randsignal

Examples

## Not run:
A <- grid1$sA
x <- grid1$xy[,1]
f <- sin(x)
smoothmodulus(f, A)

## End(Not run)
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SNR Compute the Signal to Noise Ratio

Description

SNR computes the Signal to Noise Ratio (SNR) between two signals, indicating the level of desired
signal to the level of background noise.

Usage

SNR(x, y)

Arguments

x Numeric vector/matrix. Original reference signal.

y Numeric vector/matrix. Restored or noisy signal.

Details

Higher values of SNR indicate a cleaner signal compared to the noise level. The SNR is computed
as the ratio of the power of the signal (or the square of the Euclidean norm of the signal) to the
power of the noise (or the square of the Euclidean norm of the signal difference), represented in
decibels (dB).

The SNR is defined by:

SNR(x, y) = 20 log10

(
∥x∥2

∥x− y∥2

)

Value

SNR Numeric. Signal to Noise Ratio.

See Also

PSNR

Examples

x <- cos(seq(0, 10, length=100))
y <- x + rnorm(100, sd=0.5)
SNR(x, y)



spectral_coords 39

spectral_coords Spectral Coordinates for Graph Drawing

Description

Calculates the spectral coordinates of a graph using the two smallest non-zero eigenvalues of the
graph Laplacian.

Usage

spectral_coords(adj_mat)

Arguments

adj_mat A symmetric adjacency matrix or sparse matrix representing an undirected graph.

Details

The spectral_coords function implements a 2-dimensional spectral graph drawing method based
on the eigenvectors of the graph Laplacian associated with its two smallest non-zero eigenvalues.
Given a graph with adjacency matrix adj_mat, the graph Laplacian L is computed, which is a matrix
representation that encodes the graph’s topology. The Laplacian’s eigenvalues and eigenvectors are
calculated, and the eigenvectors corresponding to the second and third non-zero smallest eigenval-
ues are used to determine the coordinates of the graph’s vertices in the plane.

Value

A matrix where each row represents the spectral coordinates of a node in the graph.

References

Chung, F. R. K. (1997). Spectral Graph Theory. American Mathematical Soc.

Hall, K. M. (1970). An r-dimensional quadratic placement algorithm. Management science, 17(3),
219-229.

See Also

plot_graph, plot_signal

Examples

## Not run:
matrixname <- "bcspwr02"
groupname <- "HB"
download_graph(matrixname,groupname)
xy <- spectral_coords(bcspwr02$sA)
bcspwr02$xy <- xy
plot_graph(bcspwr02)
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## End(Not run)

SuiteSparseData Matrix Data from SuiteSparse Matrix Collection

Description

This dataset represents the collection of matrices from the SuiteSparse Matrix Collection. The
structure of the dataframe mirrors the structure presented on the SuiteSparse Matrix Collection
website.

Usage

SuiteSparseData

Format

A data frame with 2893 rows and 8 columns:

ID Integer. Unique identifier for each matrix.

Name Character. Name of the matrix.

Group Character. Group name the matrix belongs to.

Rows Integer. Number of rows in the matrix.

Cols Integer. Number of columns in the matrix.

Nonzeros Integer. Number of non-zero elements in the matrix.

Kind Character. Kind or category of the matrix.

Date Character. Date when the matrix was added or updated.

Details

The SuiteSparse Matrix Collection is a large set of sparse matrices that arise in real applications.
It is widely used by the numerical linear algebra community for the development and performance
evaluation of sparse matrix algorithms. The Collection covers a wide spectrum of domains, includ-
ing both geometric and non-geometric domains.

Note

Data download date: 2023-11-01 Note that the number of matrices in the SuiteSparse Matrix Col-
lection may have increased since this download date.

Source

SuiteSparse Matrix Collection website: https://sparse.tamu.edu/

https://sparse.tamu.edu/
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References

Davis, T. A., & Hu, Y. (2011). The University of Florida sparse matrix collection. ACM Transac-
tions on Mathematical Software (TOMS), 38(1), 1-25.

Kolodziej, S. P., Aznaveh, M., Bullock, M., David, J., Davis, T. A., Henderson, M., Hu, Y., &
Sandstrom, R. (2019). The suitesparse matrix collection website interface. Journal of Open Source
Software, 4(35), 1244.

SUREthresh Stein’s Unbiased Risk Estimate

Description

Adaptive Threshold Selection Using Principle of Stein’s Unbiased Risk Estimate (SURE).

Usage

SUREthresh(
wcn,
thresh,
diagWWt,
beta = 2,
sigma,
hatsigma = NA,
policy = "uniform",
keepwc = TRUE

)

Arguments

wcn Numeric vector of the noisy spectral graph wavelet coefficients.
thresh Numeric vector of threshold values.
diagWWt Numeric vector of weights typically derived from the diagonal elements of the

wavelet frame matrix.
beta A numeric value specifying the type of thresholding to be used, for example:

• 1 for soft thresholding.
• 2 for James-Stein thresholding.

sigma A numeric value representing the standard deviation (sd) of the noise.
hatsigma An optional numeric value providing an estimate of the noise standard deviation

(default is NA).
policy A character string determining the thresholding policy. Valid options include:

• "uniform" for a global threshold applied uniformly across all coefficients.
• "dependent" for threshold values that adaptively depend on the corre-

sponding diagWWt weights.
keepwc A logical value determining if the thresholded wavelet coefficients should be

returned (Default is TRUE).
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Details

The SUREthresh function is a data-driven approach to finding the optimal thresholding value for
denoising wavelet coefficients. SURE provides a means to evaluate the denoising quality of a given
thresholding function h. The expected risk in terms of the mean squared error (MSE) between the
original coefficients F and their thresholded counterparts h(F̃), considering a noise variance σ2, is
given by:

E
[
∥F− h(F̃)∥22

]
= E

−nσ2 + ∥F̃− h(F̃)∥22 + 2σ2

n(J+1)∑
i,j=1

γij∂jhi(F̃)


Where:

• F̃ are the noisy wavelet coefficients.

• γij represents the elements of the matrix obtained by multiplying the transpose of the wavelet
transform matrix Ψ with itself, i.e., γij = (Ψ⊤Ψ)ij .

• hi is the ith component of the thresholding function h.

• n is the sample size.

The thresholding operator, represented by h in the SUREthresh function, is obtained using this
betathresh function. The SURE in the transformed domain can be explicitly stated as:

SURE(h) = −nσ2 +

n(J+1)∑
i=1

F̃ 2
i

(
1 ∧ tβi

|F̃i|β

)2

+ 2

n(J+1)∑
i=1

γij1[ti,∞)(|F̃i|)

[
1 +

(β − 1)tβi

|F̃i|β

]
.

GVN and HPFVN provide naive noise variance estimation.

Value

A list containing:

• A dataframe with calculated SURE and hatSURE values.

• Minima of SURE and hatSURE and their corresponding optimal thresholds.

• Thresholded wavelet coefficients (if keepwc = TRUE).

Note

The vector of thresholds thresh for evaluating the SURE can be effectively determined by order-
ing the absolute values of the noisy wavelet coefficients. This approach aligns with Donoho and
Johnstone’s trick in standard wavelet thresholding, where SURE typically reaches its minimum at
one of these coefficients. For further details, see Donoho and Johnstone Section 2.3 and de Loynes
et al. Section 3.3.

The function intentionally omits the irreducible variance term from the SURE calculations, as it
doesn’t affect the minimum’s location.

Also, when ‘keepwc = TRUE‘, the function provides thresholded wavelet coefficients for all evalu-
ated threshold values, offering deeper insights into the effects of different thresholds.
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References

Donoho, D. L., & Johnstone, I. M. (1995). Adapting to unknown smoothness via wavelet shrinkage.
Journal of the american statistical association, 90(432), 1200-1224.

de Loynes, B., Navarro, F., Olivier, B. (2021). Data-driven thresholding in denoising with Spectral
Graph Wavelet Transform. Journal of Computational and Applied Mathematics, Vol. 389.

Stein, C. M. (1981). Estimation of the mean of a multivariate normal distribution. The annals of
Statistics, 1135-1151.

See Also

SURE_MSEthresh, GVN, HPFVN

Examples

#
# See example in SURE_MSEthresh
#

SURE_MSEthresh Stein’s Unbiased Risk Estimate with MSE

Description

Adaptive Threshold Selection Using Principle of SURE with the inclusion of Mean Squared Error
(MSE) for comparison.

Usage

SURE_MSEthresh(
wcn,
wcf,
thresh,
diagWWt,
beta = 2,
sigma,
hatsigma = NA,
policy = "uniform",
keepwc = TRUE

)

Arguments

wcn Numeric vector of the noisy spectral graph wavelet coefficients.

wcf Numeric vector of the true spectral graph wavelet coefficients.

thresh Numeric vector of threshold values.
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diagWWt Numeric vector of weights typically derived from the diagonal elements of the
wavelet frame matrix.

beta A numeric value specifying the type of thresholding to be used, for example:

• 1 for soft thresholding.
• 2 for James-Stein thresholding.

sigma A numeric value representing the standard deviation (sd) of the noise.

hatsigma An optional numeric value providing an estimate of the noise standard deviation
(default is NA).

policy A character string determining the thresholding policy. Valid options include:

• "uniform" for a global threshold applied uniformly across all coefficients.
• "dependent" for threshold values that adaptively depend on the correspond-

ing ‘diagWWt‘ weights.

keepwc A logical value determining if the thresholded wavelet coefficients should be
returned (Default is TRUE).

Details

SURE_MSEthresh function extends the SUREthresh function by providing an MSE between the
true coefficients and their thresholded versions for a given thresholding function h. This allows
for a more comprehensive evaluation of the denoising quality in simulated scenarios where the true
function is known.

Value

A list containing:

• A dataframe with calculated MSE, SURE, and hatSURE values.

• Minima of SURE, hatSURE, and MSE, and their corresponding optimal thresholds.

• Thresholded wavelet coefficients (if keepwc = TRUE).

References

Donoho, D. L., & Johnstone, I. M. (1995). Adapting to unknown smoothness via wavelet shrinkage.
Journal of the american statistical association, 90(432), 1200-1224.

de Loynes, B., Navarro, F., Olivier, B. (2021). Data-driven thresholding in denoising with Spectral
Graph Wavelet Transform. Journal of Computational and Applied Mathematics, Vol. 389.

Stein, C. M. (1981). Estimation of the mean of a multivariate normal distribution. The annals of
Statistics, 1135-1151.

See Also

SUREthresh, GVN, HPFVN
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Examples

## Not run:
# Compute the Laplacian matrix and its eigen-decomposition
L <- laplacian_mat(grid1$sA)
U <- eigensort(L)

# Compute the tight frame coefficients
tf <- tight_frame(U$evalues, U$evectors)

# Generate some noisy observation
n <- nrow(L)
f <- randsignal(0.01, 3, grid1$sA)
sigma <- 0.01
noise <- rnorm(n, sd = sigma)
tilde_f <- f + noise

# Compute the transform coefficients
wcn <- analysis(tilde_f, tf)
wcf <- analysis(f, tf)

# Compute the weights and use DJ trick for the SURE evaluation
diagWWt <- colSums(t(tf)^2)
thresh <- sort(abs(wcn))

# Compute to optimal threshold
opt_thresh_u <- SURE_MSEthresh(wcn,

wcf,
thresh,
diagWWt,
beta=2,
sigma,
NA,
policy = "uniform",
keepwc = TRUE)

# Extract corresponding wavelet coefficients
wc_oracle_u <- opt_thresh_u$wc[, opt_thresh_u$min["xminMSE"]]
wc_SURE_u <- opt_thresh_u$wc[, opt_thresh_u$min["xminSURE"]]

# Get the graph signal estimators
hatf_oracle_u <- synthesis(wc_oracle_u, tf)
hatf_SURE_u <- synthesis(wc_SURE_u, tf)

# Compare the perfomance according to SNR measure
round(SNR(f, hatf_oracle_u), 2)
round(SNR(f, hatf_SURE_u), 2)

## End(Not run)

swissroll Swiss Roll Graph Generation



46 synthesis

Description

Generates points for a Swiss roll graph. The function maps points from the square [0, 1]2 into the
Swiss roll using the specified transformations.

Usage

swissroll(N = 500, seed = NULL, a = 1, b = 4)

Arguments

N Number of points drawn (numeric).

seed Optionally specify a RNG seed for reproducible experiments (numeric).

a, b Shape parameters (numeric).

Details

Given points (x, y) within the unit square [0, 1]2, the Swiss roll transformation is achieved using:
Sx = π

√
(b2 − a2)x+ a2 and Sy = π2(b2−a2)y

2 . The transformed (x, y) coordinates are then
projected into 3D space to produce the characteristic rolled shape.

Value

N x 3 array for 3d points.

See Also

adjacency_mat

Examples

## Not run:
pts <- swissroll(N=500, seed=0, a=1, b=4)
plot3D::scatter3D(pts[,1], pts[,2], pts[,3], colvar=NULL, col="red")

## End(Not run)

synthesis Compute the Synthesis Operator for Transform Coefficients

Description

synthesis computes the graph signal synthesis from its transform coefficients using the provided
frame coefficients.

Usage

synthesis(coeff, tf)
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Arguments

coeff Numeric vector/matrix. Transformed coefficients of the graph signal.

tf Numeric matrix. Frame coefficients.

Details

The synthesis operator uses the frame coefficients to retrieve the graph signal from its represen-
tation in the transform domain. It is the adjoint of the analysis operator TF and is defined by the
linear map T ∗

F : RI → RV . For a vector of coefficients (ci)i∈I , the synthesis operation is defined
as:

T ∗
F(ci)i∈I =

∑
i∈I

ciri

The synthesis is computed as:
y = coeffT tf

Value

y Numeric vector/matrix. Synthesized graph signal.

See Also

analysis, tight_frame

Examples

## Not run:
# Extract the adjacency matrix from the grid1 and compute the Laplacian
L <- laplacian_mat(grid1$sA)

# Compute the spectral decomposition of L
decomp <- eigensort(L)

# Generate the tight frame coefficients using the tight_frame function
tf <- tight_frame(decomp$evalues, decomp$evectors)

# Create a random graph signal.
f <- rnorm(nrow(L))

# Compute the transform coefficients using the analysis operator
coef <- analysis(f, tf)

# Retrieve the graph signal using the synthesis operator
f_rec <- synthesis(coef, tf)

## End(Not run)
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tight_frame Tight-Frame Computation

Description

Constructs a tight-frame wavelet on graphs

Usage

tight_frame(
evalues,
evectors,
b = 2,
filter_func = zetav,
filter_params = list()

)

Arguments

evalues Numeric vector containing the eigenvalues of the Laplacian matrix.
evectors Matrix of the corresponding eigenvectors of the Laplacian matrix.
b Numeric scalar. Parameter that controls the number of scales in the wavelet

decomposition.
filter_func Function used to compute the filter values. By default, it uses the zetav function

but other frame filters can be passed.
filter_params List of additional parameters required by filter_func. Default is an empty list.

Value

Matrix of the tight-frame wavelet coefficients.

Note

tight_frame can be adapted for other filters by passing a different filter function to the filter_func
parameter. The computation of kmax using λmax and b applies primarily to the default zetav filter.
It can be overridden by providing it in the filter_params list for other filters.

References

Coulhon, T., Kerkyacharian, G., & Petrushev, P. (2012). Heat kernel generated frames in the setting
of Dirichlet spaces. Journal of Fourier Analysis and Applications, 18(5), 995-1066.

Göbel, F., Blanchard, G., von Luxburg, U. (2018). Construction of tight frames on graphs and
application to denoising. In Handbook of Big Data Analytics (pp. 503-522). Springer, Cham.

Leonardi, N., & Van De Ville, D. (2013). Tight wavelet frames on multislice graphs. IEEE Trans-
actions on Signal Processing, 61(13), 3357-3367.

de Loynes, B., Navarro, F., Olivier, B. (2021). Data-driven thresholding in denoising with Spectral
Graph Wavelet Transform. Journal of Computational and Applied Mathematics, Vol. 389.
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Examples

## Not run:
# Extract the adjacency matrix from the grid1 and compute the Laplacian
L <- laplacian_mat(grid1$sA)

# Compute the spectral decomposition of L
decomp <- eigensort(L)

# Generate the tight frame coefficients using the tight_frame function
tf <- tight_frame(decomp$evalues, decomp$evectors)

## End(Not run)

zetav Evaluate Localized Tight-Frame Filter Functions

Description

zetav evaluates the filters associated with a specific tight-frame construction.

Usage

zetav(x, k, b = 2)

Arguments

x A vector representing the support on which to evaluate the filter
k A scalar representing the scale index.
b A scalar parameter that governs the number of scales (b=2 default).

Details

The function zetav evaluates the partition of unity functions ψ following the methodology de-
scribed in the references similar to the Littlewood-Paley type, based on a partition of unity, as pro-
posed in the reference papers. This approach, inspired by frame theory, facilitates the construction
of filter banks, ensuring effective spectral localization.

A finite collection (ψj)j=0,...,J is a finite partition of unity on the compact interval [0, λmax]. It
satisfies:

ψj : [0, λmax] → [0, 1] for all j ∈ {1, . . . , J} and ∀λ ∈ [0, λmax],

J∑
j=0

ψj(λ) = 1.

Let ω : R+ → [0, 1] be a function with support in [0,1]. It’s defined as:

ω(x) =


1 if x ∈ [0, b−1]

b · x
1−b +

b
b−1 if x ∈ (b−1, 1]

0 if x > 1
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For a given b > 1. Based on this function ω, the partition of unity functions ψ are defined as:

ψ0(x) = ω(x)

and for all j ≥ 1:
ψj(x) = ω(b−jx)− ω(b−j+1x)

where J is defined by:

J =

⌊
log λmax

log b

⌋
+ 2

Given this finite partition of unity (ψj)j=0,...,J , the Parseval identity implies that the following set
of vectors forms a tight frame:

F =
{√

ψj(L)δi : j = 0, . . . , J, i ∈ V
}
.

Value

Returns a numeric vector of evaluated filter values.

References

Coulhon, T., Kerkyacharian, G., & Petrushev, P. (2012). Heat kernel generated frames in the setting
of Dirichlet spaces. Journal of Fourier Analysis and Applications, 18(5), 995-1066.

Göbel, F., Blanchard, G., von Luxburg, U. (2018). Construction of tight frames on graphs and
application to denoising. In Handbook of Big Data Analytics (pp. 503-522). Springer, Cham.

Leonardi, N., & Van De Ville, D. (2013). Tight wavelet frames on multislice graphs. IEEE Trans-
actions on Signal Processing, 61(13), 3357-3367.

de Loynes, B., Navarro, F., Olivier, B. (2021). Data-driven thresholding in denoising with Spectral
Graph Wavelet Transform. Journal of Computational and Applied Mathematics, Vol. 389.

Examples

## Not run:
x <- seq(0, 2, by = 0.1)
g <- zetav(x, 1, 2)
plot(x, g, type = "l")

## End(Not run)
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